当前位置:首页 > 教学文档 > 说课稿

数学说课稿

时间:2024-06-13 20:56:23
关于数学说课稿合集七篇

关于数学说课稿合集七篇

作为一名无私奉献的老师,时常会需要准备好说课稿,说课稿有助于顺利而有效地开展教学活动。怎么样才能写出优秀的说课稿呢?以下是小编收集整理的数学说课稿7篇,欢迎阅读,希望大家能够喜欢。

数学说课稿 篇1

各位评委、各位老师:

大家下午好!

我说课的内容是《切线的判定》。我将从教材分析、学情分析、目标重难点分析、教法学法分析、教学过程、教学评价六个方面阐述我对本节课的设计意图。

一、教材分析

1、教材的地位和作用

本节内容选自九下第三章《圆》第五节《直线和圆的位置关系》的第二课时《切线的判定》。本课时内容是在学习了直线与圆的位置关系的基础上,进一步探究直线和圆相切的条件,并为探究切线长定理和切割线定理而作准备的,它在圆的学习中起着承上启下的作用,在整个初中几何学习中起着桥梁和纽带的作用。因此,它是几何学习中必不可少的知识工具。

2、本课主要知识点

(1)判定一条直线是否为圆的切线

(2)过圆上一点画圆的切线。

(3)作三角形的内切圆。

3、教材整改

结合教学实际及中考要求,我对教材内容略作了调整。当探究出判定后,为了提高学生将所学的知识应用于实际,我特增加了例1和例2,让学生总结出"证明一条直线是圆的切线时,常常添加辅助线的两种方法",帮助学生进一步深化理解切线的判定定理,达到学以致用。

同时我对学案也作了调整。将在后面的学习过程中得以具体的体现。

二、学情分析

1、已有的知识能力

学生已经掌握了等边三角形的性质,直角三角形的性质,圆周角的知识,与圆有关的性质,切线的定义,切线的性质等。

2、已有的数学能力

具有初步的逻辑推理能力和基本的作图能力等。

3、已有的学习能力

预习能力、小组合作能力、讲解能力、概括总结能力,评价能力等。

三、目标、重难点分析

基于上述情况,结合《新课程标准》和我校学生的实际情况,特制定了如下教学目标。(一)目标分析

1、知识与技能

(1)能判定一条直线是否为圆的切线。

(2)会过圆上一点画圆的切线。

(3)会作三角形的内切圆。

2、过程与方法

(1)通过判定一条直线是否为圆的切线,训练学生的推理判断能力。

(2)会过圆上一点画圆的切线,训练学生的作图能力。

3、情感态度与价值观

(1)经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点。

(2)经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题。

设计意图:学习目标是在对教材分析和学情分析基础上设定,它的设定一定既符合大纲的知识、能力要求,又要平行你的学生的能力水平。因此,承上:它起着承载知识的生长点以及与旧知识的联系;还要联系学生已有的知识、能力和方法,这些目标针对你的学生一定是最能实现和达到的;启下:它起着教师对教学过程设计中的起点在何处,这个起点是否针对了你自己将要面对的本堂课的学生,是否符合所教学生的认知特点和心理特点。还决定了你的整个教学设计如何来落实完成知识、发展过程、突破能力。

本课时内容都是围绕切线的判定来展开的,根据教学目标及学生的实际情况,制定了如下重难点:

(二)重难点分析

1、教学重点:

探索圆的切线的判定方法,并能运用。

突出措施:学生通过所选取的四个图形,以问题链的形式,并结合已学过的直线与圆的位置关系及切线的定义,以小组内交流,组间互评,老师点评等形式得出判定。并全班齐读判定,勾画圈点关键词。并让学生回顾切线判定的另外两种方法,加深对判定的理解记忆。

2、教学难点:

由于圆这一章内容平时生活中见得比较少,切线又比较抽象,所以基于学情我确定如下为教学难点。

探索圆的切线的判定方法。

作三角形内切圆的方法。

突破措施:主要通过将问题细化,通过在学习准备中提前抛出问题,通过学生分组学习、练习、学生板演、学生讲解等方式突破难点。

四、教法与学法分析:

教法上:我主要采用以学案为载体的DJP教学模式,充分发挥学生的主观能动性。以学生自主学习为主,教师引导学生自主探究,并帮助学生课堂讲解,并赋以合理的评价,激发学生的学习兴趣,调动学生课堂积极性。同时还结合了启发、讲解、评价综合的教法。

学法上:充分发挥小组作用,采取合作学习的形式,在小组内进行交流、讨论、讲解,再面向全班讲解,让学生自主学习,构建知识体系。

五、教学过程

本节课采用以学案导学的DJP教学模式,这种教学模式主要有以下六个环节:

教学活动设计如下:

【达标检测】

1、判断直线l是否是⊙O的切线,并说明理由。

2、如右图,∠AOB=30° ,M为OB上任意一点,以M为圆心,

2cm为半径作⊙M,则当OM=________时,OM与OA相切。

3、如右图,AB是⊙O的直径,∠ABT=45° ,AT=AB.

求证:AT是⊙O的切线。

4、如右图:已知直线AB经过圆O上的点C, 并且OA=OB,CA=CB, 求证:直线AB是圆O的切线。

设计意图:

(1)、为了检测学生对本节课知识的掌握情况,教师及时反馈了解学生的学习效果。

(2)、为学习下一课时的内容作知识准备。

(五)课后作业

C类: ①课本P129随堂练习2

②课本P129习题1

B类: ①课本P129随堂练习1,2

②课本P129习题1,2

A类: ①课本P129随堂练习2

②课本P129习题1,2,试一试

③上网查阅整理切线在判定在相关资料,特别是在生活中的应用。

设计意图:

设计意图:作业分层布置,在完成达标的基础上拓宽和加深,加强学生综合能力和创造才能的培养。也是尊重学生个体差异的表现。

(六)板书设计

优美清晰、图象规范、色彩艳丽的幻灯片,不能代替规范的板书,它从静态体现知识之间的联系,有利于知识的系统化。故而设计板书如下:

§3.8 切 线 的 判 定

一、切线的三种判定方法:

1、直线与圆只有唯一的公共点;

2、圆心到一条直线的距离等于半 ……此处隐藏7438个字……本目的在于为个体的发展服务。个性的和谐,理性的培养,情操的陶冶,身心发展的平衡等都是新课标所追求的目标。

基于此,我确定了3个层面的教学目标:

层面1是知识目标:学生能理解分数除法的概念及意义,能掌握分数除法的计算方法。

层面2是技能目标:通过对分数除法的研究,学生观察、分析、归纳、表达等方面的能力能得到相应的发展。

层面3是情感目标:学生能体验获得成功的乐趣,体会数学和生活的紧密联系的同时,锻炼克服困难的意志,养成认真好学、乐于交流、勇于思考的学习习惯。

3、教学重点与难点

根据教材内容并结合新课标以及学生具体情况,我确定本课的教学重点为掌握分数除法的计算方法;教学难点是分数除法的计算法则的推导过程;关键点是理解分数除法的意义。

二、说学情

学生是学习的主体,对学生情况的分析是教学工作的关键环节。因此,我将从以下两方面进行分析:

1、小学生的心理特点:小学生年幼好动,有强烈的好奇心,注意力分散,因此,我采用形象生动、形式多样的教学方法,激发学生的学习兴趣,培养学生的能力、

2、小学生的知识结构:学生已经完成了整数除法的学习,积累了一定的有关分数的知识。这时,水到渠成的学习“分数除法”,能让学生对除法有一个比较完整的认识。

三、说教法学法

关于教法。根据教学内容的特点,为了更好地突出重点、突破难点,按照学生的认知规律,遵循教师为主导、学生为主体、训练为主线的指导思想。我在教学中采用以情景教学法、观察发现法为主,以多媒体演示法为辅的教学方法,使学生始终处于主动探究问题的积极状态,更高效率地学到知识。

关于学法。我们不仅要教给学生知识,更要教会学生如何去学。新课标指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。为此,在本节课的教学活动中我将尊重学生的主体地位,让学生自主、合作、探究,通过迁移已有的知识和学习经验获取知识。

四、是我本次说课最重要的部分——说教学过程。

为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为:情境导入、讲授新课、巩固练习、归纳总结、布置作业5个阶段。具体过程如下:

第1阶段:情境导入。

我将使用多媒体播放“分生日蛋糕”的情境,提出“假设只剩下的生日蛋糕,但需要分给5个人,每个人能分得多少蛋糕?”通过现实生活中的情境,自然而然地引出分数除法的主体。

“兴趣是最好的老师”,而对小学生来说,在学习中培养他们的学习兴趣,激发学习的热情尤为重要。教育学和心理学的研究表明,当学习材料与学生已有的知识和生活经验相联系时,学生对学习才会感兴趣。本节课开始由分蛋糕的场景引入,引起了学生的兴趣,紧紧抓住了学生的注意力,同时紧密联系学生的生活实际,让他们感到数学并不神秘,数学就在自己的身边,更激起了他们探索新知的欲望。

第2阶段:讲授新课。

我将使用多媒体展示问题情境:“把一张纸的平均分成2份,每份是这张纸的几分之几?”让学生自己试着折一折涂一涂。学生利用事先准备好的纸,先把纸平均折成5份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。在学生汇报反馈时,将学生的思维过程展示出来,即分、涂的过程。使每位学生都能在清晰地展示中分享他人的思维方法。通过思考操作,学生达成共识:里有4个,平均分成2份,每份就是2个,是。接着让学生列出算式÷2=,在探究过程中,学生同时理解了分数除法的意义。

学生通过操作,明白是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。这种方法是否具有普遍性呢?教师让每位学生举例验证,通过分一分,涂一涂证明结论。

学生很快发现有些算式是无法用以上结论计算出来的,如÷3,分子4除以3是除不尽的。矛盾的引发,说明“分母不变,被除数的分子除以整数得到商的分子”这样的计算方法不具有普遍性。我引导学生再一次进行探究。为了便于全班统一交流,我选取学生举例中的一道典型算式进一步研究,如÷3,此时,先让学生动手分一分、涂一涂,然后再让他们进行小组交流。

根据学生的小组讨论,学生发现把平均分成3份,每一份就是这张纸的。得到的算式是÷3=。此时我还引导学生发现:把平均分成3份,这其中的一份实际上就是的,而求一个数的几分之几可以用乘法来计算,算式是×=。比较两个算式,学生很快发现它们是相等的。由此,引导学生得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

这一环节我将尽量放手,给学生广阔的空间,把学生置身于探索者、发现者的位置,从而给学生创造一个观察思考、自由讨论、发现创新的机会,使学生从感性认识上升到理性认识,从被动接受知识为主动探索,学生学习的过程变得精彩而不在枯燥无味。

第3阶段:巩固练习。

为了让学生深刻认识分数除以整数,我将要求学生在课堂上独立完成教材P32做一做的第1题第1小题和第2题前面3个小题。我将通过抽个别学生上黑板作答,巡视其他学生的草稿本作答的方式,了解学生对本课知识的掌握情况,对学生的闪光点给予表扬,对学生的不足之处加以点拨,以此让学生充分消化本课内容,并学会学以致用。

第4阶段:归纳总结。

我将让学生自主小结,畅谈这节课的收获,说说学了这节课你又哪些新的收获?同时,我将对学生的总结加以评价与鼓励,查漏补缺,使学生对本课知识结构有一个清晰而系统的认识。帮助学生梳理自己所学的知识的同时,还可以进一步激发学生学习的热情,发展学生的能力。

第5阶段:布置作业。

作业是课堂的有效延伸。根据作业的巩固性和发展性原则,我将对作业进行分层设置,其中必做题为:教材P34练习7的第3—4题;选做题为:教材P34练习7的第11题。

这样既让学生及时巩固本课知识,又为学有余力的学生留有自由发挥的空间,弥补了课堂缺陷,照顾了学生的个别差异,进行了因材施教。

五、说板书设计。

我的板书分为3板块,黑板的正中央是我本节课的主题《分数除法》,左边引入情境,中间板块呈现教学重点与难点;右边是练习讲解。这样设计直观大方,很直观地展示教学内容,让学生一目了然,能够引起学生的注意和兴趣,最终达到概括、巩固、提高的教学目的。

六、教学反思。

总之,本课我努力为学生提供具体的实践活动,创设出引导学生探索、操作和思考的情景。整节课大部分时间学生都在动手实践:有独立探究,有合作交流;有猜想,有验证;有观察,有分析,有想象。我力求让学生在尽可能大的活动空间中切实体验到数学就在自己的身边,数学对解决实际问题是有用的。

整节课的教学,我和我的孩子们在轻松的活动中获得了发现,在激烈的讨论中明白了道理,在愉悦的合作中享受了成功!以上就是我说课的全部内容,谢谢各位专家老师的耐心聆听!

《关于数学说课稿合集七篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式