当前位置:首页 > 教学文档 > 教学反思

三角函数教学反思

时间:2024-06-13 20:56:38
三角函数教学反思

三角函数教学反思

身为一位优秀的老师,我们要有很强的课堂教学能力,通过教学反思可以快速积累我们的教学经验,教学反思要怎么写呢?下面是小编整理的三角函数教学反思,欢迎阅读与收藏。

三角函数教学反思1

结合自己的教学发现存在许多不足的地方,为了更好的加强教学,提高教学效率,对本节教学反思如下:

一: 应用传统的以旧带新方法,利用学生在初中学习过的锐角三角函数,对给出的一个锐角,借助三角板构造直角三角形,找出它的正弦、余弦的近似值是很容易的事,而恰恰在这一点上,学生耗费了大量的时间,而教师又不想越俎代庖地告诉学生,这就严重影响了后续建立任意角三角函数的概念,并通过特殊角的求值体验、把握内涵的时间保证,造成体验不够,概括过早,应用更少的现象.

二:问题教学设计不够合理。没有准确把握学生的知识

基础与认识能力,教科书在节首提出的“思考”是:“我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗”其实,学生只知道锐角三角函数是直角三角形中边长的比值,并不完全知道“它们都是以锐角为自变量,以比值为函数值的函数”,这就需要通过复习,来帮助学生补上这一点.

三:思想方法渗透不是很到位:这一节课把教学的基本要求定位在,弄清任意角三角函数与锐角三角函数的区别,接受用坐标(或坐标的比值)表示三角函数就够了.但需要注意的是,应该通过什么方式让学生建立起用坐标(或比值)表示任意角三角函数,以及领会建立这个概念过程中所蕴涵的数学思想方法.

通过以上反思:认识到课堂教学是一项实践性很强的工作,除了认真的课前准备外,对教学过程中出现的“突发事件”,随机应变十分重要.教师需要关注学生的学习行为,关注学生的认识过程,随时修改自己的教学设计,调整教学内容、教学要求,改变策略,选择恰当的方法实施教学,以达到最佳教学效果.

三角函数教学反思2

我上了一节《同角三角函数的基本关系 (1) 》一课,感谢数学组老师给我评课,让我收获很大,自己仔细想想,自己的课存在很多的问题 :

1. 对同角强调不够。 提问的角度和质量,还需要有更深刻和严谨的思考。 有老师提出应该讲关系式前强调一下同角,给出了基本关系式再一次强调同角。

2. 讲例题时,我采取的方式是让学生先做再将。有老师提出先讲例题,再做,让学生知道规范形式

和具体的书写要求。在讲例题时,运用基本关系式,应该先求 sin 2 α ,cos 2 α ,再根据角的范围

求 罪 α,COSα的值 。

3. 对于本节课的同角三角函数的关系的应用中, 求值 是重点, 而难点 已知正切值,如何求解正弦值和余弦值。只是在练习2 才体现 。 应该总结为 变式 1中使用了分类讨论的思想 。 对于题干的形式,要引导学生观察,反复观察,对于公式及其变形要反复强化,重点在观察,而在这里,我强调的不够。

4.对公式的变形、公式的理解强调不够。公式应用可以顺用、逆用、变形用,三者关系要把握好。

5. 课堂中的激情不够,没有给学生更强的感染力,课堂感觉还是平平,没有给人以心跳的感觉。

6. 课堂上虽有调动学生积极性的意识,但是手段还是过于单一,教学方法不够灵活。学生的复述就是很好的方法。

7. 整堂课的设计没有把握好时间,节奏没有把握好,造成前松后紧,而导致没有完成教学任务。最后设计的经典部分没有讲。

通过这次课的准备和反思,自己领悟了很多,教学需要精心的设计,耐心的思考,深刻的反思,学习。自己的教学水平需要提高,处理课堂的问题需要成熟,自己的业务水平需要尽快进步。通过这次课,让我又一次成长,在今后的教学中,我会更加努力,用心去教学,用爱去教育。

三角函数教学反思3

思维总是从问题开始的,有问题,学着才主动。学生在不断解决问题,发现问题中学习,知识得到了掌握,能力得到了训练,情感得到了体验。我来谈谈上完本节课之后的感想,做一小结和反思,以便更好地服务于课堂教学。

一、 在教学时对学生状况进行了正确的分析,这是成功的开始。

有利条件:学生已经学过相似形、直角三角形及函数等有关知识,具备一定的分析判断及推理能力,通过教师引导能够完成学习任务。不利因素及对策:初三学生两极分化明显,不同学生的认知水平、思维能力不同,而数学抽象性较强,多数学生对数形结合类型题的适应能力较差。另外,学生虽然学过函数知识,但是锐角三角函数是初次接触,学生不易理解。所以,在教学中关键是抓住三角函数定义的理解,由浅入深,逐步解决问题。

二、 教学过程注重学生基础知识的掌握及能力的培养。

本节课不仅要使学生了解三角函数的概念,而且要理解三角函数制值只与角的大小有关,即当某一锐角取固定值时,这角的三角函数值不仅存在,而且唯一。教学大纲明确指出,培养学生的分析问题、解决问题的能力是数学教学的一项重要任务。因此,根据教学目的的要求,在教学过程中让学生逐步学会观察、探索、猜想、发现新知识,培养学生解决问题的能力。

三、 为了充实课堂容量,加强教学效果,采取了多种教学方式。

根据学生已有的知识结构,我把两节课的内容合并成一节,原因是学生探究出正弦的概念的同时,轻而易举地能得出余弦、正切的概念,这样更有助于学生对知识的联贯性学习。在教学过程中采用了多媒体教学。

四、 教学过程中的不足在课堂教学过程中,将教师的指导教学和学生的自主学习有效地结合起来,圆满完成了本节内容的教学任务。

并且,在自己的努力下,课堂教学中有些环节上有了很大的进步,特别是把两节的内容合并成一节按时间完成了教学任务。还有很多不足之处,譬如:从自身的角度看,和学生的交流做的不够、讲与练时间控制的不太好,特别在督促学生动笔书写方面;从学生的角度看,学生灵活运用概念的能力较差,及计算能力也有待加强。总之,本节内容的教学还是比较成功的,当然也有不足之处,在今后的教学工作中,需不断总结、反思。作为数学教师,一方面要激发学生学习数学的兴趣,让学生感觉到每解决一个数学问题,就有一种成就感;另一方面,更重要的是教师本人要不断提高自己的专业水平。在总结、反思中不断提升自己的教学水平。

三角函数教学反思4

“同角三角函数的基本关系”教学反思

1、主要内容

(1)、角度的拓广(锐角与任意角);

(2)、研究的载体(锐角在直角三角形中,任意角在直角坐标系中);

(3)、揭示程度(直到高中才旗帜鲜明点出,初中为何忍而不发?!);

(4)、知识的前后相互兼容。

2、本课思维线索:

三个问题:(1)、有 ……此处隐藏3918个字……积极、主动、问题意识强。

在教学中,我还注重对学生进行数学学习方法的指导。在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会作题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目。通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念、基础知识。

在这节课的教学中存在许多缺陷,促使我进一步研究和探索。我们必须清醒地认识到,课程改革势在必行,在教学中加入新的理念,发挥传统教学的基础性和严谨性,不断地改善教法、学法,才能适应现代教学。

总之,在教学方法上,改变教师教、学生听的传统模式,采用学生自主交流、合作学习、教师点拨的方式,把主动权真正交给学生,让学生成为课堂的主人,才能提高学生的问题意识。

三角函数教学反思11

1.关于三角函数的教学,应注意以下问题:

(1)要根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型的意义。例如,通过单摆、弹簧振子、圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型。

(2)借助单位圆,帮助学生直观地认识任意角的三角函数,理解三角函数的周期性、诱导公式、同角三角函数关系式,以及三角函数的图象和基本性质。引导学生自主地探索三角函数的有关性质,培养他们分析问题和解决问题的能力。

(3)弧度是学生比较难接受的概念,教学中应使学生体会弧度也是一种度量角的单位,可在后续课程的学习中逐步理解这一概念,在此不作深究。

2.关于平面向量的教学,应注意以下问题:

(1)向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。了解这些物理背景和几何背景,对于学生理解向量概念和运用向量解决实际问题都是十分重要的。

(2)引导学生运用向量解决一些物理和几何问题。例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题。对于用向量解决较为复杂的平面几何问题不作要求。

(3)向量的非正交分解、向量投影的概念只要求了解,不必展开。线段定比分点坐标公式及应用不作要求。

3.三角恒等变换的教学,应注意以下问题:

(1)教学中,注意展示数学发现的过程,可以引导学生利用平面向量的数量积推导出两角差的余弦公式,并由此公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。

(2)鼓励学生独立探索和讨论交流,引导学生推导积化和差、和差化积、半角公式,以此作为三角恒等变换的基本训练。

(3)能利用同角三角函数的基本关系式、诱导公式、两角和与差的三角函数公式、二倍角的三角函数公式,进行简单的三角函数式的化简、求值及恒等式证明。其中,简单的三角函数式的化简、求值及恒等式证明指三角函数变形的次数一般不超过三次,整个解题过程中三角函数公式的使用一般不超过5个。

三角函数教学反思12

改进的设想:

(1)回顾任意角、象限角与轴线角的概念.

(2)回顾锐角三角函数的定义,有了任意角之后,原来三角函数的定义有局限性,需要对其重新定义,以适用于任意的三角函数.

(3)除了锐角的三角函数外,在其它学科中有没有接触到一些特殊角的三角函数值?(意图是让学生说出)

重新定义的原则有哪些?

①和谐的原则,新定义应该包含以前的定义,即当角为锐角时,其定义应与前面的三角形边的比值等价.由此可以确定,新的定义仍应是比值的形式;

②传承的原则,新定义应保留旧定义中的一些做法,如可以同样在角的终边上任取一点来定义,且所得结果应与所取点的位置无关.

③相容的原则,新定义不能与一些熟悉的结论相矛盾.如当角为钝角时,其余弦值应为负值.由此可知,新的三角函数的定义应保证所得三角函数值有正负之分;

④自然的原则,新定义不能出来得很奇怪,要让人接受必须顺其自然,可在我们前面讨论的象限角的基础上进行,换句话说,老师在给出一个任意角的时候,就可以将角直接放在直角坐标系下,因为前面已讨论过象限角.

按上述几个原则让学生自主探究.

三角函数教学反思13

任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在此基础上初步建立任意角三角函数概念的意义,《任意角的三角函数》教学反思。如,计算方法、定义域、值域、符号表示、有关结论(与点的位置的选取无关)后,首先提供“坐标系”作为脚手架,并引发学生的认知冲突—“在坐标系下,如何研究一个任意角的三角函数?”并以坐标系为平台,有层次的研究随角的变化,即第一象限下的锐角(认识研究方法的变化,以及符号表示的变化)——0~2π范围内的角(认识该范围内角的三角函数的表示方法,特别是值域的变化)——不同象限下终边相同的角(逐渐形成计算一个任意角的三角函数的操作过程)。

锐角三角函数概念教学时如果是先给一个锐角,再构造三角形,而不是象当前大多数教材中采用的直接放在一个直角三角形下,对学生概念的迁移会更有帮助。

“任意角和弧度制”,应该完成用弧度制表示一个角α及其终边相同的角的集合如何表示,会对本节课“任意角的三角函数”概念的教学更有意义。

新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计.

到底应该怎样去合理定义任意角的三角函数呢让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突.在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思.这样也有助于学生对任意角三角函数概念的理解.

让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的.培养数形结合的思想.

《标准》把发展学生的数学应用意识和创新意识作为其目标之一,在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间,促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力,发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断,教学反思《《任意角的三角函数》教学反思》。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略,使学生认识到数学原来就来自身边的现实世界,是认识和解决我们生活和工作中问题的有力武器,同时也获得了进行数学探究的切身体验和能力。增进了他们对数学的理解和应用数学的信心。

《三角函数教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式